GCSE
 ELECTRONICS
 44301
 Mark scheme

4430
June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Component: 44301

Name: GCSE Electronics

Question	Part	Sub Part	Marking Guidance	Mark	Comments

$\left.\begin{array}{|l|l|l|l|l|l|}\hline 1 & \text { (a) } & \begin{array}{l}\text { These answers are examples only, other answers will be worth equal credit } \\ \text { Do not work alone } \checkmark \\ \text { No-one to help or get help in an emergency } \checkmark \\ \text { Do not work on circuits when switched on } \checkmark \\ \text { Danger from heat or stored charge in components } \checkmark\end{array} & 4\end{array}\right\}$
$\left.\begin{array}{|c|c|c|l|c|c|}\hline 1 & \text { (b) } & \begin{array}{l}\text { Isolating: no direct connection between primary and secondary } \checkmark \\ \text { Step-down: secondary voltage lower than primary voltage } \checkmark \\ \text { dc: current flows in one direction only accept direct current } \checkmark\end{array} & 3\end{array}\right\}$

| 1 | (c) | live \checkmark
 melts and breaks connection when current flow exceeds a certain level \checkmark
 fuse has to be replaced, circuit breaker can be re-set \checkmark
 fuse works on heat, circuit breaker magnetic \checkmark | 3 max | |
| :---: | :---: | :--- | :--- | :--- | :--- |

2		```resistor \(\checkmark 270(\Omega) \checkmark 5 \%\) (tolerance) \(\checkmark\) IC/ Integrated Circuit \(\checkmark\) logic \(\checkmark\) (D-type) Flip-Flop \(\checkmark\) or CMOS \(\checkmark\) ("D" shaped mark shows) pin layout/marks pin \(1 \checkmark\) capacitor \(\checkmark 22 \mathrm{nF} \checkmark 5 \%\) (tolerance) \(\checkmark 100 \mathrm{~V}(\mathrm{wkg}) \checkmark\)```	10

| 3 | (a) | (i) light sensor \checkmark
 (ii) piezo buzzer \checkmark
 (ii) astable \checkmark
 (iv) NOR gate \checkmark
 (v) comparator \checkmark | 5 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 3 | (b) | (i) light sensor/ first one/ input \checkmark
 (ii) comparator/ analogue to digital converter/ ADC/adc \checkmark
 (ii) astable/ pulse generator/ rigital converter/ADC/adc \checkmark
 (iv) comparator/ analogue to digit
 (v)astable/ pulse generator \checkmark | 5 | |
| :---: | :---: | :--- | :--- | :--- | :--- |

| 5 | (a) | (ii) $\operatorname{series} \checkmark$ | 1 | |
| :--- | :--- | :--- | :---: | :---: | :---: |
| 5 (b) (i) $9-2.2=6.8(V) \checkmark$ 1 | | | | |

| 5 | (b) | (ii) $6.8 / 0.02 / 20 \checkmark=340 \Omega \checkmark$ | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

5	(b)	(iii)	$360 \Omega \checkmark$ so LED current is not exceeded \checkmark	2	

| 5 | (b) | (iv) 120Ω or e.c.f \checkmark | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 5 | (b) | (v)parallel \checkmark
 evidence of $1 / 680+1 / 680=1 / 340$ or equivalent \checkmark | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

(c)

| 7 | (d) | (iii)The range of frequencies \checkmark where the power gain is at least half the maximum gain/where it
 produces at least half of its rated output power(as spec.) \checkmark (or equivalent using voltage
 $70 \%)$ | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\left.\begin{array}{|c|c|c|l|l|l|}\hline 8 & \text { (a) } & \begin{array}{l}\text { The output resistance is low } \checkmark \text { and the input resistance is high } \checkmark \\ \text { Alternative if numerical values given: output resistance } 1000000 \text { ohms (or more) } \checkmark \text { input } \\ \text { resistance } 300 \text { ohms (or less) } \checkmark\end{array} & 2\end{array}\right\}$

8	(b)	(i)	$2 \checkmark \vee \checkmark$ words or use of formula \checkmark	3	
8	(b)	(ii)	$(+) 6(V) \geq V \geq 4(V) \checkmark$	1	

8	(b)	(iii)	$0(\mathrm{~V}) \leq \mathrm{V} \leq 2(\mathrm{~V}) \checkmark$	1	

8	(c)	(i)		5	

8	(c)	(ii)	Level 3 2 1	Marks 4-5 2-3 0-1	Descriptor an answer will be expected to meet most of the criteria in the level descriptor - answer is full and detailed and is supported by an appropriate range of relevant points such as those given below - argument is well structured with minimal repetition or irrelevant points - accurate and clear expression of ideas with only minor errors in the use of technical terms, spelling, punctuation and grammar - answer has some omissions but is generally supported by some of the relevant points below - the argument shows some attempt at structure - the ideas are expressed with reasonable clarity but with a few errors in the use of technical terms spelling, punctuation and grammar - answer is largely incomplete, it may contain some valid points which are not clearly linked to an argument structure - unstructured answer - errors in the use of technical terms, spelling, punctuation and grammar or lack of fluency	5	QWC - Example The diode protects the MOSFET. \checkmark When the current through the relay coil \checkmark is switched off \checkmark a high voltage is induced \checkmark which could damage the MOSFET. The diode provides a safe path for current.

| 9 | (a) | (ii)If either the guard is not in place \checkmark or the dust extractor is not working \checkmark or both \checkmark and the
 stone cutter is switched on \checkmark | 4 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

10	(a)	(i)	monostable \checkmark	1	

10	(b)	(i)	astable \checkmark	1	

| 10 | (b) | (iii) | $\mathrm{T}=\left(\mathrm{R}_{1}+2 \mathrm{R}_{2}\right) \mathrm{C} / 1.44 \checkmark=\left(5.6 \times 10^{3}+2 \times 30 \times 10^{3}\right) \times 10 \times 10^{-6} / 1.44=0.45(\mathrm{~s}) \checkmark$ powers of
 $10 \checkmark$ | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 10 | (c) | (i) | 3 LEDs connected to 0,1 and 2 outputs $\checkmark \checkmark \checkmark$ | 3
 (minus 1 if LEDs wrong way
 round, minus $\mathbf{1}$ if symbols
 incorrect but still
 recognisable) |
| :---: | :---: | :---: | :---: | :---: | :--- |

