AQA

GCSE
 ADDITIONAL SCIENCE COMBINED (ROUTE 2)
 AS1HP Paper 5 Higher Tier
 Mark scheme

June 2014

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening

2.1 In a list of acceptable answers where more than one mark is available 'any two from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.
2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the mark scheme are shown by a / ; e.g. allow smooth / free movement.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.
Each error / contradiction negates each correct response. So, if the number of error / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.
However, responses considered to be neutral (indicated as * in example 1) are not penalised.
Example 1: What is the pH of an acidic solution? (1 mark)

Student	Response	Marks awarded
1	green, 5	0
2	red $^{\star}, 5$	1
3	red $^{\star}, 8$	0

Example 2: Name two planets in the solar system. (2 marks)

Student	Response	Marks awarded
1	Neptune, Mars, Moon	1
2	Neptune, Sun, Mars,	0
	Moon	

3.2 Use of chemical symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Full marks can be given for a correct numerical answer, without any working shown.
However, if the answer is incorrect, mark(s) can be gained by correct substitution / working and this is shown in the 'extra information' column or by each stage of a longer calculation.

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.5 Errors carried forward

Any error in the answers to a structured question should be penalised once only.
Papers should be constructed in such a way that the number of times errors can be carried forward are kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation e.c.f. in the marking scheme.

3.6 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited unless there is a possible confusion with another technical term.

3.7 Brackets

(.....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 Ignore / Insufficient / Do not allow

Ignore or insufficient is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

Do not allow means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.

Quality of Written Communication and levels marking

In Question 3 students are required to produce extended written material in English, and will be assessed on the quality of their written communication as well as the standard of the scientific response.

Students will be required to:

- use good English
- organise information clearly
- use specialist vocabulary where appropriate.

The following general criteria should be used to assign marks to a level:

Level 1: basic

- Knowledge of basic information
- Simple understanding
- The answer is poorly organised, with almost no specialist terms and their use demonstrating a general lack of understanding of their meaning, little or no detail
- The spelling, punctuation and grammar are very weak.

Level 2: clear

- Knowledge of accurate information
- Clear understanding
- The answer has some structure and organisation, use of specialist terms has been attempted but not always accurately, some detail is given
- There is reasonable accuracy in spelling, punctuation and grammar, although there may still be some errors.

Level 3: detailed

- Knowledge of accurate information appropriately contextualised
- Detailed understanding, supported by relevant evidence and examples
- Answer is coherent and in an organised, logical sequence, containing a wide range of appropriate or relevant specialist terms used accurately.
- The answer shows almost faultless spelling, punctuation and grammar.

Question 1					
question	answers	extra information	mark	spec ref	I.D.
1(a)	any four from: - ref to transect - (transect) from sea to trees or trees to sea - ref to use of quadrat - ref to a suitable interval along transect - record presence / absence (in quadrat) - repeat to check results or repeat to calculate a mean	eg tape / string allow across the habitat accept description of quadrat eg every 1 - 10 metres or continuous allow eg \% cover / number ignore repeat unqualified	4	B2.4.1b	E
1(b)(i)	sea rocket	accept rocket	1	B2.4.1	G
1(b)(ii)	marram grass	accept marram	1	B2.4.1	G
1(b)(iii)	(as age increases number of species) increases then decreases		1 1	B2.4.1	E
1(c)	insufficient / low light (intensity) so little / not much photosynthesis	accept too dark or only 52 / 27 (\%) light allow these species need less light do not accept no light accept no (net) photosynthesis allow other species need more light (to grow) accept insufficient nutrients / water (1) because of competition from pine trees (1)	1 1	B2.4.1	E
Total			10		

Question 2

question	answers	extra information	mark	spec ref	I.D.
2(a)	ammonia + hydrogen chloride ammonium chloride	accept hydrogen chloride + ammonia accept NH_{3} for ammonia accept HCl for hydrogen chloride accept $\mathrm{NH}_{4} \mathrm{Cl}$ for ammonium chloride	1	C2.3.3f	E
$\begin{aligned} & \text { 2(b)(i) } \\ & \text { Mark } \\ & \text { with } \\ & \text { 2(b)(iii) } \end{aligned}$	107 (g)		1	C2.3.3e	G
2(b)(ii)	any one from: - some (product) left in apparatus - reversible reaction	ignore weighing errors ignore references to evaporation accept reaction does not go to completion allow loss of (reactant) gas	1	C2.3.3d	E
$\begin{gathered} \text { 2(b)(iii) } \\ \text { Mark } \\ \text { with } \\ \text { 2(b)(i) } \end{gathered}$	89.7 / 90	allow ecf from part (b)(i) allow for 1 mark evidence of $\underline{96}$ or $\underline{96}$ 107 answer to (b)(i)	2	C2.3.3c	E
Total			6		

Question 3

question	answers	extra information	mark	Spec ref	I.D.

3			6	$\begin{gathered} \hline \mathrm{C} 2.1 .1 \mathrm{~g} \\ \mathrm{C} 2.2 .3 \mathrm{a} / \mathrm{c} \end{gathered}$	E
Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5 and apply a 'bestfit' approach to the marking.					
0 marks	$\begin{gathered} \text { Level } 1 \\ (1-2 \text { marks) } \end{gathered}$	Level 2 (3-4 marks)	Level 3 (5-6 marks)		
No relevant information	A relevant statement is made about the structure of graphite or at least one property of graphite is given.	There is a description of the structure and a description of at least one property of graphite or an attempt at explaining how at least one property is linked to the structure	There is a good description of the structure and properties of graphite and an attempt at explaining how at least one property is linked to the structure.		

examples of the points made in the response
Structure:

- (only) carbon atoms
- giant structure
- hexagonal rings
- layers
- covalent bonds (between carbon atoms)
- strong bonds (between carbon atoms)
- each (carbon) bonds to three others
- no (covalent) bonds between layers

Property:

- soft
- slippery
- high melting point
- does not decompose when heated
- conducts electricity

Explanation:

- layers are free to slide
- (high melting point due to) strong / many bonds within layers
- because no covalent / strong bonds between layers

extra information

allow macromolecular
accept weak (intermolecular) forces (between layers)
accept delocalised electrons
accept streaking or leaves a mark
allow high boiling point
accept there are weak (intermolecular) forces between layers
accept parts break off because the layers are so thin
accept delocalised electrons are free to move

Question 4

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
4(a)	any one from: - make sure no one is looking over the ball - ensure everyone is beyond the area it will fall. - watch the ball during its entire flight. - wear safety spectacles / goggles	ignore reference to finger injuries allow aim away from people	1	P2.1	E

4(b)	elastic potential energy		1	P2.1.5b	G

4(c)(i)	any two from: - meter rules not being vertical - parallax - difficult to see where ball stops - ball not close to ruler - can measure from top or bottom of ball	allow eyes not being in line with ball and ruler allow ball only stops for a short time allow ball does not travel straight up ignore ball moves too fast ignore reference to reaction time if no other mark awarded allow one mark for misreading ruler	2	P2.1	E

4(c)(ii)	0.36	allow 1 mark for correct substitution, i.e. $E_{p}=0.02 \times 10 \times 1.8$ allow 1 mark for an answer of 360 irrespective of working do not accept j allow mJ or millijoules if an answer of 360 is given	2	P2.2.1f	E
	J or joules	1			

4(d)(i)	(A) drag / air resistance / friction (B) weight / gravity	allow upthrust	1	P2.1.4b	E

4(d)(ii)	increases		1	P2.2	A

Total			10

Question 5

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
5(a)(i)	has chloroplast(s) has (cell) wall	allow chlorophyll	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	B2.1.1	E
5(a)(ii)	any one from: - has flagellae / flagellum - has eye (spot) / is sensitive to light - no (permanent) vacuole	allow idea Volvox can move	1	B2.1.1	E
5(a)(iii)	any one from: - no differentiation / specialisation - (different) cells don't have different functions	allow all cells the same (structure / appearance) allow all cells have same functions allow has no organs / tissues	1	B2.2.1	E
5(b)	mitochondria provide/release energy (for) flagellae to move	allow respiration in mitochondria do not allow mitochondria produce / make energy	1 1	B2.4.1	E
Total			6		

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
6	any four from: explanation of how it works - dye cuts out / reduces light (to pygmy-weed) - (less / no light so) no / less photosynthesis (by pygmy-weed) - lack of photosynthesis / light means pygmy-weed will not grow / die - native plants don't grow in autumn / winter so not affected (by dye / lack of light) explanation of (possible) problems - no / less food for (wild) animals in autumn / winter (when there may be little / no other food) - less oxygen for (pond) animals - unknown effect of breakdown products in dye	max $\mathbf{3}$ for explanation of how it works allow no / less glucose / starch made allow native plants (only) grow in spring / summer so not affected by dye allow idea that (wild) animals may die without food allow idea that dead pygmy-weed will decompose (1) and cause eutrophication / described (1) allow "advantages outweigh disadvantages" if explanations given clearly indicate this	[1	B2.3/B2.4	E
Total			5		

Question 7

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
7(a)(i)	any two from: - contract - move food - churn / mix contents	allow peristalsis for either point ignore break down	2	B2.2.1b/c	E
7(a)(ii)	any two from: - produce(digestive) juices / (hydrochloric) acid - ref enzymes - break down / digest (food)	allow named juice (eg saliva / bile / pancreatic juice) accept eg amylase / protease / lipase / carbohydrase	2	B2.2.1 b/c	E
7(b)(i)	(in mouth) saliva (from salivary glands) (in stomach) (hydrochloric) acid / gastric juices (at beginning of small intestine) any one from: - bile (from liver) - juice from pancreas - juice from small intestine	ignore enzymes if no other mark allow 1 mark, for 'addition of (digestive) juices'	1 1 1	B2.2.1d	E
7(b)(ii)	absorption of solutes / (digested) food	allow named examples eg glucose / amino acids	1	B2.2.1d	E
7(b)(iii)	absorption of water		1	B2.2.1d	E
Total			9		

Question 8

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
8(a)	atoms of same element or (atoms with the) same number of protons	ignore reference to electrons	accept (atoms have) same atomic number accept both atoms have 17 protons	C2.3.1a/c/d	E
	with different number of neutrons	accept different mass number accept one atom has 18 neutrons, one has 20	1		

8(b)(i)	35.5	do not accept with incorrect unit e.g. g	1	C2.3.1.1e	E

8(b)(ii)	average value for the isotopes (of the element)	accept average value for mass of all atoms (in chlorine) allow mean for average	1	C2.3.1.1e	E

Total			4

Question 9

Question	Answers	Extra Information	Mark	Spec Ref	I.D.

9(a)	plastic bags [LD poly(ethene)] is more flexible so can change shape	1	C2.2.5a	E
	garden chairs $[$ HD poly(ethene) $]$ is stronger so less likely to break or [HD poly(ethene)] is rigid so maintains shape	accept [HD poly(ethene)] is stronger so holds higher weight	1	

9(b)(i)	thermosoftening polymers do melt (when heated)	accept thermosetting polymers do not melt (when heated) accept poly(ethene) has a low melting point / melts	1	C2.2.5b	E

9(b)(ii)	weak (intermolecular) forces	lignore references to tangled chains allow bonds for forces accept no cross-links	1	C2.2.5b	E
	between the (polymer) chains				

| 9(c) | made using different catalysts | C2.2.5a | E | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| made using different (reaction)
 conditions | accept made using
 different temperatures /
 pressures (ignore values) | 1 | C | |

Total			7

Question 10

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
10(a)	magnesium atom loses electrons and oxygen atom gains electrons (magnesium atom loses) two electrons and (oxygen atom gains) two electrons forms a magnesium ion with a 2^{+}charge forms an oxide ion with a 2 charge	any reference to incorrect bonding $=\max$ 3 accept for 2 marks a correctly drawn diagram allow 1 mark for reference to movement of 2 electrons if first mark point not gained allow Mg^{2+} (ion) formed allow O^{2-} (ion) formed if neither third or fourth mark point scored, allow 1 mark for mention of ionic bond / ions / electrostatic attraction being formed / both (magnesium and oxide ions) have full outer shells	1 1 1 1	$\begin{aligned} & \text { C2.1.1b/c/f/ } \\ & \text { C2.2.2a } \end{aligned}$	E

10(b)	giant (ionic) structure or lattice with strong (ionic) bonds (so) large amounts of energy are needed to break the bonds or large number of bonds to be broken	accept electrostatic forces for bonds throughout do not accept intermolecular forces / shared electrons accept (so) large amounts of energy are needed to overcome the forces	1 1 1	$\begin{aligned} & \text { C2.1.1f/ } \\ & \text { C2.2.2a } \end{aligned}$	E
Total			7		

Question 11

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
11(a)(i)	air resistance or drag or friction (with the air)	ignore wind	1	P2.1.3	E
11(a)(ii)	zero	allow 0 / nothing ignore constant ignore units	1	P2.1.1e	E

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11(b) \& \begin{tabular}{l}
(the cyclist) accelerates or increases speed or increase velocity \\
(as) the amount of backward force is lower \\
(causing a) resultant force
\end{tabular} \& \begin{tabular}{l}
allow drag or friction or air resistance for backward forces throughout \\
allow goes faster \\
allow (as) the (frontal) surface area is lower or (more) streamlined or (more) aerodynamic \\
allow (which means) the forward force / thrust / pedal force is greater than backward force
\end{tabular} \& 1

1 \& P2.1 \& E

\hline
\end{tabular}

11(c)	7.5	allow 1 mark for correct substitution, i.e.	2	P2.1.2e	E
$2=\frac{18-3}{t}$ or $2=\frac{15}{t}$					

11(d)	any two from: - force applied to pedals - mass of cyclist / bike - aerodynamics of the helmet / wheels / clothing - gradient of the ground - wind - altitude - road surface - tyre pressure / type	allow pedal faster / slower allow strength of the cyclist allow weight allow shape allow weather if qualified	2	P2.1	E

Total			9

Question 12

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
12(a)(i)	current (through the LDR) potential difference / voltage across the LDR	in either order accept amount of amps accept amount of volts across the LDR	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	P2.3.2f	E
12 (a)(ii)	decrease		1	P2.3.2i	E
12(b)(i)	as the light level increases by a factor of 10 the resistance reduces by a factor of 5	allow for 1 mark as the light level increases the resistance decreases	2	P2.3.2p	E
12 (b)(ii)	4.5		1	P2.3.2k	E

Total

6

Question 13

Question	Answers	Extra Information	Mark	Spec Ref	I.D.
$\mathbf{1 3}$ (a)	the (total) momentum before (an event) is equal to the (total) momentum after (the event)	allow (total) momentum does not change from before to after (the event)	1	P2.2.2a	E
in a closed system	accept if no external forces acting	1			
$\mathbf{1 3 (b) ~}$	0.063	accept 0.06 or 0.0625 for 2 marks	2	P2.2.2b	E
		allow 1 mark for correct substitution, ie. $5=80 \times v$			

| 13(c) | any one from:
 - momentum is a vector
 quantity
 - shows the direction (the
 astronaut travels in)
 - opposite to the direction
 (of the hammer) | P2.2.2
 allow motion / velocity
 is backwards or to the
 left or opposite the
 hammer | E |
| :---: | :--- | :--- | :--- | :--- |

Total		5

