Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Secondary Education Higher Tier June 2015

Further Additional Science Unit 2 Chemistry C3

Thursday 14 May 2015 9.00 am to 10.00 am

For this paper you must have:

- a ruler
- the Chemistry Data Sheet (enclosed).

You may use a calculator.

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 4(b) should be answered in continuous prose.
 - In this question you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.

FAS2HP

TOT EXAM	
Examine	r's Initials
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

For Evaminer's Use

Answer all	I questions	in the	spaces	provided.
------------	-------------	--------	--------	-----------

Figure 1 shows the positions of eight elements in the modern periodic table. 1

Figure 1

roup	1	2							3	4	5	6	7	0
_														
	Li		1								N			
			l						Al					
	K					Fe		Cu			As		Br	

1 (a) The two metals that	react vigorously with wa	ater are and	d
				[1 mark]

1 (b)	The element used as a catalyst in the Haber process is	
		[1 mark

1 (c)	The two elements with five electrons in their outer shell (highest energy	level) are
	and	[1 mark]

1 (d) Iron has ions with different charges.

The other metal that has ions with different charges is	
	[1 mark]

Turn over for the next question

2	In 1866 John	Newlands	produced a	an early	version	of the	periodic ta	ble.
---	--------------	----------	------------	----------	---------	--------	-------------	------

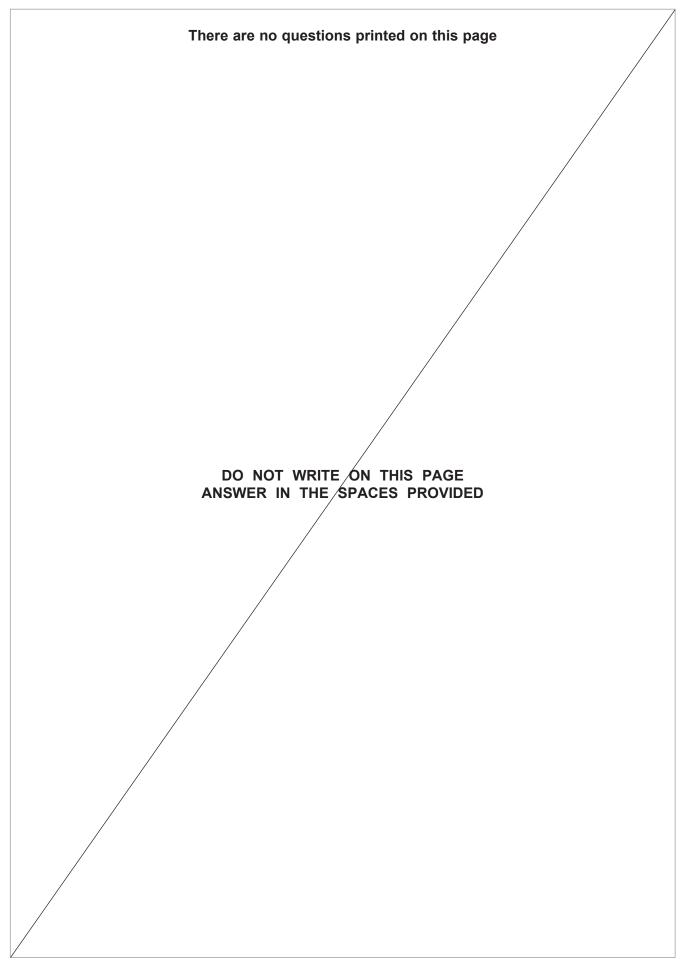
Part of Newlands' periodic table is shown in Figure 2.

Figure 2

Column	1	2	3	4	5	6	7
	Н	Li	Ве	В	С	N	0
	F	Na	Mg	Al	Si	Р	S
	CI	K	Ca	Cr	Ti	Mn	Fe

Newlands' periodic table arranged all the known elements into columns in order of their atomic weight.

Newlands was trying to show a pattern by putting the elements into columns.


2 (a) Iron (Fe) does **not** fit the pattern in column 7.

	Give a reason why.	[1 mark]
2 (b)	In 1869 Dmitri Mendeleev produced his version of the periodic table. Why did Mendeleev leave gaps for undiscovered elements in his periodic table.	e? [1 mark]

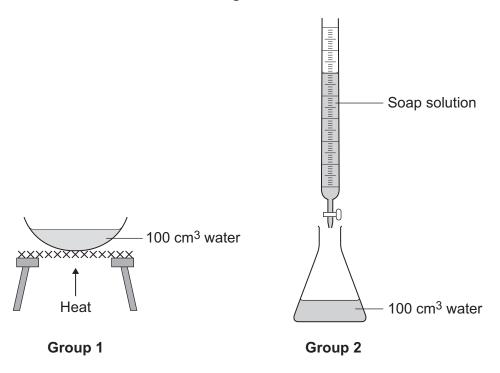
2 (c)	Newlands and Mendeleev placed the elements in order of atomic weight.
	Complete the sentence. [1 mark]
	The modern periodic table places the elements in order of
2 (d)	Lithium, sodium and potassium are all in Group 1 of the modern periodic table.
	Explain why. [2 marks]

3	This question is about the halogens (Group 7).	
3 (a)	How do the boiling points of the halogens change down the group from fluoring iodine?	e to [1 mark]
3 (b)	Sodium bromide is produced by reacting sodium with bromine.	
	Sodium bromide is an ionic compound.	
3 (b) (i)	Write down the symbols of the two ions in sodium bromide.	[1 mark]
3 (b) (ii)	Chlorine reacts with sodium bromide solution to produce bromine and one oth product.	er
	Complete the word equation for the reaction.	[1 mark]
	chlorine + sodium bromide	
3 (b) (iii)	Why does chlorine displace bromine from sodium bromide?	[1 mark]
3 (b) (iv)	Use the Chemistry Data Sheet to help you to answer this question.	
	Suggest which halogen could react with sodium chloride solution to produce of	hlorine.

- **4** This question is about water.
- 4 (a) Rainwater is soft.

How is hard water produced from rainwater?	[2 marks]

4 (b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.


Two groups of students were asked to plan a method to find the amount of hardness in a $100 \ \text{cm}^3$ sample of water.

Group 1 planned to evaporate the 100 cm³ of water to dryness and then to weigh the mass of the solid that remained.

Group 2 planned to titrate the 100 cm³ of water with soap solution.

Figure 3 shows some of the apparatus used by the students.

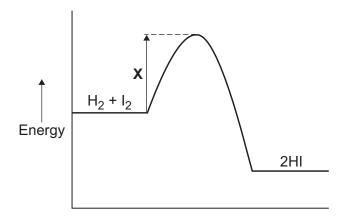
Figure 3

by Group 1.			[6 m
	 	•••••	
Extra space	 		

5	This question is about organic compounds.		
5 (a)	Ethanol is an alcohol. One use of ethanol is in alcoholic drinks.		
	Give two other uses of ethanol. [2 mark	s1	
	[=		
5 (b)	Which gas is produced when sodium reacts with ethanol? [1 mar	k]	
	Tick (✓) one box.		
	Carbon dioxide		
	Carbon monoxide		
	Hydrogen		
	Oxygen		
5 (c)	Ethanoic acid ($\mathrm{CH_3COOH}$) can be produced from ethanol ($\mathrm{CH_3CH_2OH}$).		
5 (c) (i)	What type of reaction produces ethanoic acid from ethanol? [1 mar]	k1	
	[· ······		
5 (c) (ii)	Complete the displayed structure of ethanoic acid. [1 mar	k]	
	H H—C—C H		

5 (c) (iii)	Solutions of ethanoic acid and hydrochloric acid with the same concentration had different pH values.	nave
	Explain why the solution of ethanoic acid has a higher pH than the solution of hydrochloric acid.	
	· ·	[2 marks]
5 (d)	Ethanol and ethanoic acid react in the presence of a catalyst to form an ester.	
5 (d) (i)	Name the ester made from ethanol and ethanoic acid.	[1 mark]
		[1 mark]
5 (d) (ii)	What type of chemical is used as a catalyst in this reaction?	[1 mark]
5 (d) (iii)	Esters are used in perfumes because they smell pleasant and are volatile.	
	What does volatile mean?	
		[1 mark]

6	This question is about reversible reactions and chemical equilibrium.
6 (a)	Reversible reactions can reach equilibrium in a closed system.
	What is meant by a closed system? [1 mark]
6 (b)	Hydrogen and iodine react to make hydrogen iodide in a reversible reaction.
	$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$
	The forward reaction is exothermic.
6 (b) (i)	How should the temperature be changed to increase the yield of hydrogen iodide?
	Give a reason for your answer.
	[2 marks]



6 (b) (ii)	A catalyst can be used to speed up the reaction.
	Explain how a catalyst speeds up a reaction. [2 marks]
6 (b) (iii)	Describe how the amount of hydrogen iodide produced at equilibrium would be affected by an increase in pressure.
	Give a reason for your answer. [2 marks]
	Question 6 continues on the next page

6 (c) Figure 4 shows the energy level diagram for the forward reaction.

Figure 4

6 (C) (I)	what elect would increasing the temperature of the reaction have on X?	[1 mark]
6 (c) (ii)	How would the diagram in Figure 4 change if it showed an endothermic read	ction?
	Give a reason for your answer.	[2 marks]

6 (d)	Hydrogen is used in the Haber process.	
6 (d) (i)	Complete the word equation for the reaction that takes place in the Haber process. [1 mark]	
	hydrogen + ⇌	
6 (d) (ii)	Name a natural resource from which hydrogen is produced for the Haber process. [1 mark]	
		12

- 7 This question is about chemical analysis.
- 7 (a) A student has solutions of three compounds, X, Y and Z.

The student uses tests to identify the ions in the three compounds.

The student records the results of the tests in Table 1.

Table 1

	Test				
Compound	Compound Flame test Add sodium hydroxide solution		Add hydrochloric acid and barium chloride solution	Add nitric acid and silver nitrate solution	
x	no colour	green precipitate	white precipitate	no reaction	
Υ	yellow flame no reaction no reaction yellow p		yellow precipitate		
z	no colour	brown precipitate	no reaction	cream precipitate	

Identify the	he two	ions	present in	each	compound,	Χ,	Y	and Z.

[3	ma	rks]

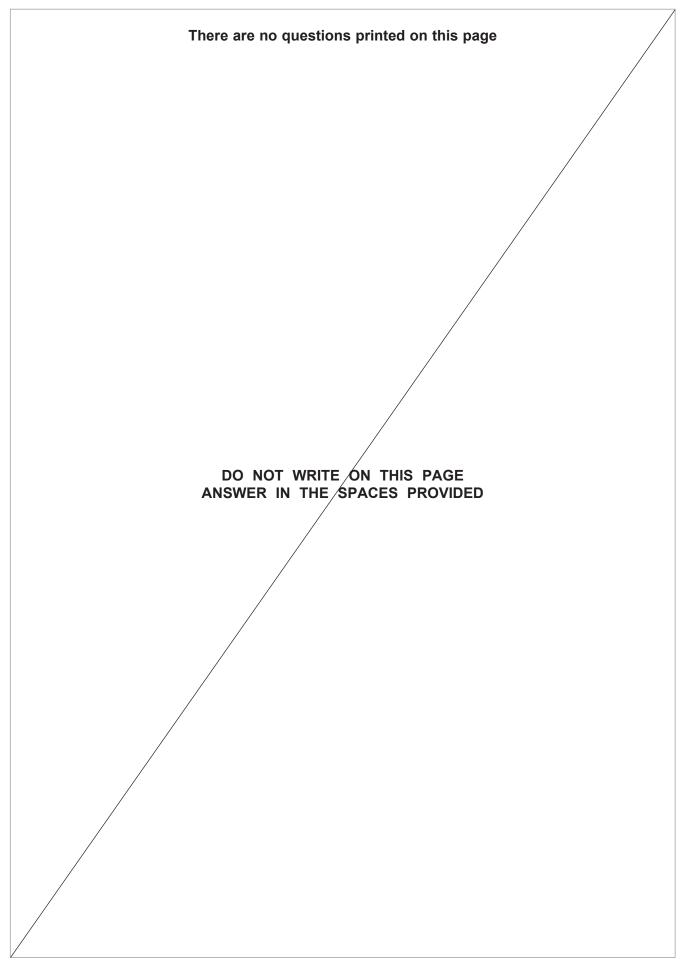
X	
Υ	
Z	

7 (b) A chemist needs to find the concentration of a solution of barium hydroxide. Barium hydroxide solution is an alkali.

The chemist could find the concentration of the barium hydroxide solution using two different methods.

Method 1

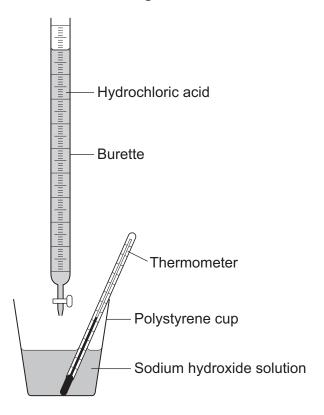
- An excess of sodium sulfate solution is added to 25 cm³ of the barium hydroxide solution. A precipitate of barium sulfate is formed.
- The precipitate of barium sulfate is filtered, dried and weighed.
- The concentration of the barium hydroxide solution is calculated from the mass of barium sulfate produced.


Method 2

- 25 cm³ of the barium hydroxide solution is titrated with hydrochloric acid of known concentration.
- The concentration of the barium hydroxide solution is calculated from the result of the titration.

Compare the advantages and disadvantages of the two methods. [5 marks]

Turn over for the next question



A student investigates the energy released when hydrochloric acid completely neutralises sodium hydroxide solution.

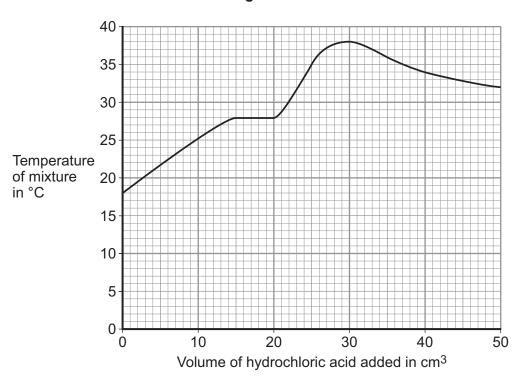
The student uses the apparatus shown in Figure 5.

Figure 5

The student:

- measures 25 cm³ sodium hydroxide solution into a polystyrene cup
- fills a burette with hydrochloric acid
- measures the temperature of the sodium hydroxide solution
- adds 5 cm³ hydrochloric acid to the sodium hydroxide solution in the polystyrene cup
- stirs the mixture and measures the highest temperature of the mixture
- continues to add 5 cm³ portions of hydrochloric acid, stirring and measuring the highest temperature of the mixture after each addition.

Question 8 continues on the next page



8 (a) The student has plotted a graph of the results.

The graph line has been incorrectly drawn by including an anomalous result.

The graph is shown in **Figure 6**.

8 (a) (i)	Suggest a cause for the anomalous result when 20 cm ³ of hydrochloric acid is	added. [1 mark]
8 (a) (ii)	Suggest the true value of the temperature of the anomalous point.	[1 mark]
	Temperature =	°C
8 (a) (iii)	What was the total volume of the mixture when the maximum temperature was reached?	3
		[1 mark]

Total volume of the mixture = cm³

8 (a) (iv)	Calculate the overall temperature increase in this experiment. [1 mark]
	Overall temperature increase =°C
8 (a) (v)	Use your answers to 8(a)(iii) and 8(a)(iv) and the equation to calculate the energy released in the reaction. Give the unit. [2 marks]
	Assume the volume in cm ³ is equivalent to the mass of solution in grams.
	Equation: $Q = mc\Delta T$
	where: Q = energy released m = mass of solution (g) c = 4.2 (J per g per °C) ΔT = change in temperature (°C)
	Energy released = Unit =
8 (b)	The student did the experiment on page 19 again, starting with 50 cm ³ of sodium hydroxide solution instead of 25 cm ³ .
	Explain why this would make no difference to the overall temperature increase. [2 marks]

END OF QUESTIONS

8

